Что такое синапс

Классификации синапсов

Основные элементы электрического синапса (эфапса): а — коннексон в закрытом состоянии; b — коннексон в открытом состоянии; с — коннексон, встроенный в мембрану; d — мономер коннексина, е — плазматическая мембрана; f — межклеточное пространство; g — промежуток в 2-4 нанометра в электрическом синапсе; h — гидрофильный канал коннексона

По механизму передачи нервного импульса

  • химический — это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.
  • электрический (эфапс) — место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований — коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало (в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.
  • смешанные синапсы — пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

По местоположению и принадлежности структурам

  • периферические
    • нервно-мышечные
    • нейросекреторные (аксо-вазальные)
    • рецепторно-нейрональные
  • центральные
    • аксо-дендритические — с дендритами

      аксо-шипиковые — с дендритными шипиками, выростами на дендритах;

      , в том числе

    • аксо-соматические — с телами нейронов;
    • аксо-аксональные — между аксонами;
    • дендро-дендритические — между дендритами;

Различные варианты расположения химических синапсов

По нейромедиатору

  • аминергические, содержащие биогенные амины (например, серотонин, дофамин

    в том числе адренергические, содержащие адреналин или норадреналин;

    );

  • холинергические, содержащие ацетилхолин;
  • пуринергические, содержащие пурины;
  • пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия синапса

  • возбуждающие
  • тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор — глицин) и ГАМК-ергические синапсы (медиатор — гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов:
1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала;
2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение.

В некоторых синапсах присутствует постсинаптическое уплотнение — электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические — симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Умственная работоспособность детей

Работоспособность человека напрямую определяет его возраст, когда все значения увеличиваются одновременно с развитием и физическим ростом детей.

Точность и скорость умственных действий с возрастом осуществляется неравномерно в зависимости от прочих факторов, фиксирующих развитие и физический рост организма. Учащимся любого возраста, у которых присутствуют отклонения здоровья, характерна работоспособность низкого значения относительно окружающих крепких детей.

У здоровых первоклашек со сниженной готовностью организма к постоянному процессу обучения по некоторым показателям способность к действию является низкой, что усложняет борьбу с возникающими проблемами в процессе учёбы.

Скорость наступления ослабленности обуславливается исходным состоянием детской системы чувствительного нервного генеза, рабочим темпом и объёмом нагрузки. При этом дети склонны к переутомлению во время продолжительной неподвижности и когда выполняемые действия ребёнку неинтересны. После перерыва работоспособность становится прежней или становится выше прежней, причём лучше отдых делать не пассивным, но активным, переключившись на отличное от этого занятие.

Изменение работоспособности у детей

Первая часть учебного процесса у обычных детей начальных классов сопровождается отличной работоспособностью, но к окончанию 3 урока у них отмечается снижение концентрации внимания:

  • Они глядят в окно.
  • Невнимательно слушают слова учителя.
  • Изменяют положения своего тела.
  • Начинают разговаривать.
  • Встают со своего места.

Специфически велики значения работоспособности у старшеклассников, обучающихся во 2 смену

Особенно важно обратить внимание на то, что достаточно коротко время для подготовки к занятиям до времени начала учебного действия в классе и не гарантирует полноценного избавления от пагубных изменений в центральной нервной системе. Умственная активность быстро истощается в первые часы уроков, что явно отмечается в отрицательном поведении

Посему качественные сдвиги работоспособности наблюдаются у учеников младшего блока на уроках с 1 — 3, а блоках среднего-старшего звена на 4 — 5 занятии. В свою очередь, 6 урок проходит в условиях особенно сниженной способности к действию. При этом продолжительность занятия у 2 — 11 классников – 45 минут, что ослабляет состояние детей. Поэтому рекомендуется периодически сменять вид работы, а в середине урока провести активную паузу.

История изучения

Впервые гипотеза о существовании электрических синапсов была выдвинута в начале XX века Камилло Гольджи и Йозефом Герлахом. Однако после открытия химических синапсов существование электрических синапсов считалось недостоверным, и до середины XX века главенствовало мнение, что передача потенциала действия между нейронами осуществляется исключительно посредством химических синапсов. Тем не менее, в 1959 году Дэвид Поттер и Эдвин Фершпан убедительно доказали существование электрических синапсов на примере гигантского аксона и аксоном моторного нейрона в брюшной нервной цепочке рака.

Пресинаптическая часть

Пресинаптическая часть содержит синаптические пузырьки с нейромедиатором, элементы цитоскелета и митохондрии. В пресинаптическую мембрану встроены потенциалозависимые Ca2+?каналы. При поступлении ПД к терминальному расширению мембрана деполяризуется, Ca2+?каналы открываются, ионы Ca2+ входят в терминаль, запуская в активных зонах процесс слияния мембраны синаптического пузырька и пресинаптической мембраны, т.е. секрецию (экзоцитоз) нейромедиатора (рис. 6–6, позиции 2–4).

Роль Са2+. Слияние синаптических пузырьков с пресинаптической мембраной происходит при увеличении концентрации Са2+ в цитозоле нервной терминали. Белок синаптического пузырька синаптотагмин связывается с Са2+ и тем самым принимает участие в регуляции экзоцитоза (в том числе путём реорганизации примембранного цитоскелета).

Синаптические пузырьки. Молекулы нейромедиатора накапливаются в нервной терминали, находясь внутри синаптических пузырьков вместе с АТФ и некоторыми катионами. В каждом пузырьке находится несколько тысяч молекул нейромедиатора, что составляет квант нейромедиатора.

Синтез нейромедиатора. Ферменты, необходимые для образования нейромедиаторов, синтезируются в перикарионе и транспортируются к синаптической терминали по аксонам (рис. 6–4).

Типы пузырьков — мелкие (диаметр порядка 50 нм) и крупные (диаметр 100–200 нм). Мелкие синаптические пузырьки содержат «классические» медиаторы (см. ниже). Крупные везикулы содержат нейропептиды.

Секреция. Когда ПД достигает нервной терминали, синаптические пузырьки сливаются с пресинаптической мембраной, что приводит к выделению квантов нейромедиатора в синаптическую щель. Незначительное количество квантов нейромедиатора постоянно (спонтанно) секретируется в синаптическую щель.

Узнавание. Предшествующий слиянию синаптических пузырьков и плазмолеммы процесс узнавания синаптическим пузырьком пресинаптической мембраны происходит при взаимодействии мембранных белков (синаптобревин, SNAP-25, синтаксин и другие).

Влияние токсинов. Синтаксин, SNAP-25 и синаптобревин — мишени ботулинического токсина, необратимо подавляющего слияние синаптических пузырьков с пресинаптической мембраной. Мишень столбнячного токсина — синаптобревин.

Активные зоны (рис. 6–3). Секреция нейромедиатора осуществляется в специализированных участках пресинаптического нервного окончания — активных зонах — участках утолщения пресинаптической мембраны. Активная зона состоит из «плотной полоски» на пресинаптической мембране и сгруппированных около неё синаптических пузырьков, потенциалозависимых кальциевых каналов, специальных белков экзоцитоза и элементов цитоскелета. Количество активных зон в нервно-мышечном синапсе достигает 30–40, в межнейронных синапсах — около десятка. Активные зоны расположены против скоплений рецепторов в постсинаптической мембране, что уменьшает задержку в передаче сигнала, связанную с диффузией нейромедиатора в синаптической щели.

Рис. 6-3. Активные зоны нервно-мышечного синапса расположены напротив постсинаптических складок — участков скоплений холинорецепторов. Пресинаптическая мембрана слева расщеплена на два листка.

Жизненный цикл синаптических пузырьков (рис. 6–4). Синаптические везикулы образуются в теле нейрона в эндоплазматическом ретикулуме и комплексе Гольджи (1) и с аксонным транспортом поступают в нервные окончания (2).

Рис. 6-4. Образование, транспорт и экзоцитоз синаптических пузырьков.

В нервном окончании мелкие синаптические пузырьки посредством активного транспорта заполняются медиатором (3) и передвигаются к пресинаптической мембране (4). Освобождение медиатора (5) может осуществляться посредством экзоцитоза с полным («классический» механизм) либо неполным (механизм «kiss and run») слиянием. Первый вид экзоцитоза сопровождается встраиванием мембраны везикулы в пресинаптическую, опорожнением пузырька, а затем посредством эндоцитоза образуются покрытые клатрином везикулы (6), которые затем проходят стадию эндосомы (7) и снова заполняются медиатором (3). Второй вид экзоцитоза характеризуется образованием временной поры, соединяющей полость пузырька с синаптической щелью. После выделения медиатора везикула не встраивается в пресинаптическую мембрану, а отпочковывается от неё (8) и повторно заполняется медиатором (3). Крупные синаптические везикулы заполняются медиатором в теле клетки (9), их экзоцитоз происходит в других участках пресинаптической мембраны, а эндоцитоз опорожнённых пузырьков отсутствует (10).

  • Назад

  • Вперёд

Топология сверточной нейросети

  • определить решаемую задачу нейросетью (классификация, прогнозирование, модификация);
  • определить ограничения в решаемой задаче (скорость, точность ответа);
  • определить входные (тип: изображение, звук, размер: 100×100, 30×30, формат: RGB, в градациях серого) и выходных данные (количество классов).

Рисунок 2 — Топология сверточной нейросети

Сверточный слой

Рисунок 3 — Организация связей между картами сверточного слоя и предыдущегоРисунок 4 — Операция свертки и получение значений сверточной карты (valid)Операция свертки и получение значений сверточной карты. Ядро смещено, новая карта получается того же размера, что и предыдущая (same)Рисунок 5 — Три вида свертки исходной матрицы

Подвыборочный слой

Рисунок 6 — Формирование новой карты подвыборочного слоя на основе предыдущей карты сверточного слоя. Операция подвыборки (Max Pooling)

Выбор функции активации

  • непрерывной;
  • монотонно возрастающей;
  • дифференцируемой.

Функция активации гиперболический тангенс

  • симметричные активационные функции, типа гиперболического тангенса обеспечивают более быструю сходимость, чем стандартная логистическая функция;
  • функция имеет непрерывную первую производную;
  • функция имеет простую производную, которая может быть вычислена через ее значение, что дает экономию вычислений.

Функция активации ReLU

  • ее производная равна либо единице, либо нулю, и поэтому не может произойти разрастания или затухания градиентов, т.к. умножив единицу на дельту ошибки мы получим дельту ошибки, если же мы бы использовали другую функцию, например, гиперболический тангенс, то дельта ошибки могла, либо уменьшиться, либо возрасти, либо остаться такой же, то есть, производная гиперболического тангенса возвращает число с разным знаком и величиной, что можно сильно повлиять на затухание или разрастание градиента. Более того, использование данной функции приводит к прореживанию весов;
  • вычисление сигмоиды и гиперболического тангенса требует выполнения ресурсоемких операций, таких как возведение в степень, в то время как ReLU может быть реализован с помощью простого порогового преобразования матрицы активаций в нуле;
  • отсекает ненужные детали в канале при отрицательном выходе.

Структура

В области каждого щелевого контакта имеется множество особых каналов, пересекающих мембраны обеих клеток. Диаметр таких каналов составляет от 1,2 до 2 нм, поэтому через них могут проходить из одной клетки в другую ионы и молекулы среднего размера, благодаря чему цитоплазмы двух соседних клеток оказываются соединёнными. Поэтому когда мембранный потенциал одной из клеток меняется, из неё ионы могут переместиться в соседнюю клетку, её за счёт своего положительного заряда. Каналы щелевых контактов состоят из двух полуканалов, которые у позвоночных называются коннексонами (каждый полуканал принадлежит одной из клеток, соединённых синапсом). Каждый коннексон образован шестью белковыми субъединицами — . Коннексин имеет длину 7,5 нм и содержит четыре участка. Коннексины в составе коннексона одинаковы или могут немного отличаться. Частным случаем электрического синапса является (англ. autapse), в образовании которого принимают участие аксон и дендрит одного и того же нейрона.

Клиническое значение

Генетические дефекты коннексинов нередко являются причиной пороков сердца, так как электрические синапсы играют важнейшую роль в синхронизации электрической и сократительной активности сердца. Нарушения в работе коннексинов в шванновских клетках приводят к функциональной патологии аксонов, что лежит в основе болезни Шарко — Мари — Тута. При этом заболевании наблюдается прогрессивная двигательная и сенсорная , кроме того, скорость проведения потенциала действия по аксонам снижена. Образование щелевых контактов между гладкомышечными клетками стенки матки находится под влиянием эстрогенов, которые стимулируют их образование в период беременности. Дефекты щелевых контактов в матке и снижение их числа нередко приводят к преждевременным родам.

Функции

Морской заяц Aplysia californica выпускает чернила в качестве защитной реакции. Она опосредована электрическими синапсами

Простота устройства электрических синапсов позволяет им проводить сигнал очень быстро, однако они участвуют лишь в простых поведенческих реакциях, в отличие от более сложно устроенных химических синапсов. Поскольку для передачи сигнала через электрический синапс не нужно связывание рецептора с сигнальной молекулой-лигандом, при работе электрических синапсов не происходит задержки, которая у химических синапсов может составлять от 0,5 до 4 миллисекунд. Однако у млекопитающих различия в скоростях проведения сигнала электрическим и химическим синапсом не различаются так сильно, как у холоднокровных животных. Благодаря высокой скорости проведения сигнала электрическим синапсам несколько соседних нейронов развивают потенциал действия практически одновременно. Ответ постсинаптического нейрона имеет тот же знак, что и изменения в пресинаптическом нейроне. Так, деполяризация пресинаптической мембраны всегда вызовет деполяризацию постсинаптической мембраны, то же самое имеет место для . Как правило, ответ постсинаптического нейрона меньше, чем амплитуда исходного сигнала; это обусловлено сопротивлением пре- и постсинаптической мембран. Электрические синапсы имеют сравнительно низкую утомляемость и очень устойчивы к изменениям внешней и внутренней среды. Обычно сигнал может проходить через электрические синапсы в обоих направлениях, однако из этого правила есть исключения. Иногда в ответ на деполяризацию в мембране аксона открываются потенциалзависимые ионные каналы, которые не дают сигналу распространяться в обоих направлениях. Имеются свидетельства своего рода «пластичности» электрических синапсов, то есть электрическая связь между двумя нейронами может ослабляться или усиливаться в зависимости от активности синапса или при изменении внутриклеточной концентрации магния.

Строение синапса

Синапс состоит из трех основных элементов:

  • Пресинаптической мембраны, которая покрывает расширенное нервное окончание, представляющее собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).
  • Постсинаптической мембраны – это утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.
  • Синаптической щели, она представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к плазме крови.

Вот так строение синапса выглядит на рисунке.

Виды синапсов

Что такое синапс

Синапсы обеспечивают связи не только между нейронами головного мозга, но и с нервными клетками органов чувств, рецепторами, расположенными во внутренних органах, мышцах и связках. Поэтому существует большое разнообразие синапсов в зависимости от специализации нейронов, от характера их воздействия, от того белкового соединения, которое вырабатывается при прохождении импульса.

В нашей нервной системе существует два основных процесса, определяющих ее деятельность. Это возбуждение и торможение. В соответствии с ними и синапсы делятся на два вида:

  • возбуждающие проводят сигналы, которые распространяют реакцию возбуждения нервных клеток;
  • тормозящие обеспечивают прохождение нервного импульса, который передает нейронам «команду» торможения.

По месту расположения синапсы различаются:

  • на центральные, расположенные в головном мозге;
  • периферические, обеспечивающие связи нейронов за пределами мозга – в периферической нервной системе.

Передача импульсов через синаптическую щель тоже может проводиться разными способами, в соответствии с этим выделяют три вида синапсов:

  • Химические синапсы расположены в коре головного мозга. Они проводят сигнал с помощью нейротрасмиттеров, которые образуются в результате биохимической реакции.
  • Электрические – та часть синапсов, которые способны передавать электрический сигнал без посредников-медиаторов. Например, это касается нейронов, расположенных в зрительном рецепторе. В этом случае химическая реакция не происходит, и обмен сигналами осуществляется быстрее.
  • Электрохимические синапсы сочетают в себе особенности обеих этих групп.

Также существует классификация синапсов по видам трансмиттеров. Например, если производится норадреналин, но синапсы эти называются адренергические, а если ацетилхолин, то – холинергические. Учитывая, что белков, вырабатываемых нейронами, несколько десятков видов, мы имеем очень объемную классификацию, которая здесь вряд ли уместна.

Механизм синаптической передачи

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Клиническое значение

Генетические дефекты коннексинов нередко являются причиной пороков сердца, так как электрические синапсы играют важнейшую роль в синхронизации электрической и сократительной активности сердца. Нарушения в работе коннексинов в шванновских клетках приводят к функциональной патологии аксонов, что лежит в основе болезни Шарко — Мари — Тута. При этом заболевании наблюдается прогрессивная двигательная и сенсорная , кроме того, скорость проведения потенциала действия по аксонам снижена. Образование щелевых контактов между гладкомышечными клетками стенки матки находится под влиянием эстрогенов, которые стимулируют их образование в период беременности. Дефекты щелевых контактов в матке и снижение их числа нередко приводят к преждевременным родам.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 — Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие роли норадреналина в синаптической передаче.

Что такое синапсы

Если перевести слово «синапс» с греческого, то получится «связь». Это и есть место связи, соединения двух нейронов. Казалось бы, что тут такого особенного в обычном соединении? Но именно синапсы делают возможным прохождение импульса по цепи нервных клеток и играют важную роль во всех психических процессах.

Место синапсов в нервной системе

Одна из главных задач нейронов – сохранение и обработка, поступающей из внешнего мира информации. От органов чувств, мышц, связок и т. д. слабые электрические сигналы по нервным волокнам попадают в головной мозг, там они распространяются по нейронным цепям, создавая очаги возбуждения и связи между отдельными нейронами, центрами и отделами головного мозга. Так вкратце происходят все процессы в нашей психике: от простейших безусловных рефлексов, до сложнейшей мыслительной деятельности.

Распространение нервных импульсов происходит благодаря имеющимся у нейронов отросткам. Короткие и сильно разветвленные дендриты специализируются на приеме сигналов от других нейронов. У одной нервной клетки может быть до 1500 дендритов. А вот передающее нервное волокно – аксон – одно, но оно длинное и может достигать 1,5 метров. Соединяясь с отростками дендритов, аксон передает сигнал от одного нейрона к другому.

Но проблема в том, что напрямую импульс чаще всего пройти не может, так как между «ветвями» дендрита одной нервной клетки и аксоном другой есть щель – пространство, заполненное межклеточным веществом.

Происходит следующее: в процессе движения импульса в месте соединения нервных волокон возникает биохимическая реакция, образуется белковая молекула – нейротрансмиттер или медиатор (посредник) – и закупоривает щель, создавая своеобразный мостик для прохождения сигнала.

Так возникает то, что еще в 1897 году английский физиолог Ч. Шеррингтон назвал синапсом.

Структура синапса

Если учесть, что размер нервной клетки редко превышает 100 мкм, то место соединения передающего и принимающего волокон двух нейронов вообще микроскопическое. И тем не менее, синапс имеет сложное строение, включающее в себя три основных отдела:

  • Нервное окончание «ветвей» дендрита, которое представляет собой микроскопическое утолщение, называемое пресинаптической мембраной. Это очень важная часть синапса, отвечающая за синтез белковых молекул.
  • Аналогичное утолщение на отростках аксона. Оно имеет специальные рецепторы, позволяющие принимать сигналы от медиаторов. Это постсинаптическая мембрана.
  • Синаптическая щель, в которой образуется медиатор – проводящая импульс белковая молекула. Эта часть синапса одновременно и препятствует прохождению сигнала, и является причиной возникновения молекул белков, которые не только играют роль «мостиков», но и участвуют в работе нервной системы и организма в целом.

Функции этих белковых соединений разнообразны, так как нейроны вырабатывают разные виды медиаторов, и их химический состав оказывает различное влияние на процессы в нервной системе. Причем влияние это настолько сильное, что оно во многом управляет психическими реакциями, а недостаток даже одного из белков может привести к серьезным заболеваниям, таким как болезнь Паркинсона или Альцгеймера.

Сейчас обнаружено и изучено более 60 видов нейротрансмиттеров с разными свойствами. Вот примеры некоторых из них:

  • Норадреналин – гормон стресса. Он обладает возбуждающим действием, повышает активность всех систем организма и добавляет чувство ярости в наше эмоциональное состояние.
  • Серотонин. Его функции многообразны: от обеспечения процесса пищеварения до влияния на уровень сексуального влечения.
  • Глутамат необходим для запоминания и сохранения информации, но его переизбыток токсичен и может вызвать гибель нервных клеток.
  • Дофамин – гормон счастья, источник позитивных эмоций, дарующий состояние блаженства. И одновременно этот белок, как и многие другие, обеспечивает эффективность познавательных процессов. А его недостаток может вызвать состояние депрессии и привести к слабоумию.

Это далеко не все белки, которые вырабатывают нейроны, но даже такой пример позволяет оценить значение нейротрансмиттеров и роль синапсов в организации нормальной деятельности головного мозга. Разрушение нервных связей в результате болезни или травмы может привести и к серьезным нарушениям психических функций.

Важно  Функции и виды мотонейронов
Оцените статью
Добавить комментарий