Серое вещество и его роль в жизнедеятельности человека

Влияние химических элементов на организм человека. 2 Влияние химических элементов на здоровье человека

Способность химических элементов вызывать нарушение жизнедеятельности организма называется токсичностью. В зависимости от степени воздействия на человека химические элементы делятся на классы опасности (СН 245-71): I – чрезвычайно опасные; II – высокоопасные; III – умеренно опасные; IV — малоопасные.

Среди химических элементов поступающих в почву из выбросов, сбросов и отходов наиболее опасными (I класс опасности) являются: мышьяк, кадмий, ртуть, свинец,селен, цинк, бенз(а)пирен и фтор; умеренную опасность (II класс опасности) представляют: бор, кобальт, никель, молибден, медь, сурьма и хром; мало опасны (III класс опасности) – барий, ванадий, вольфрам, марганец, и стронций.

Большинство из выше перечисленных химических элементов I-го и II-го классов опасности по их содержанию в воде относятся ко II классу опасности, за исключением ртути, а также бериллия и таллия, которые относятся к I классу опасности.

Комплексный и куммулятивный характер действия загрязняющих веществ на живые организмы, полиэлементность техногенных геохимических аномалий требуют разработки более синтетических показателей оценки качества среды. Так геохимическими и гигиеническими исследованиями установлена зависимость между показателями здоровья населения и уровнем загрязнения почв территории, на которой оно проживает (табл. 18.1).

Функции серого вещества

Внезародышевые органы, развивающиеся в процессе эмбриогенеза внетела зародыша, выполняют многообразные функции, обеспечивающие рост и развитие самого зародыша. Некоторые из этих органов, окружающих зародыш, называют также зародышевыми оболочками. К этим органам относятся амнион, желточный мешок, аллантоис, хорион, плацента.

Амнион— временный орган, обеспечивающий водную среду, он появляется на второй стадии гаструляции. Стенка пузырька образует внезародышевую эктодерму, соединяется с внезародышевой мезодермой.

Основная функция амниотической оболочки — выработка околоплодных вод. Амнион выполняет также защитную функцию, предупреждая попадание в плод вредоносных агентов.

Эпителий амниона, образован крупными полигональными, тесно прилегающими друг к другу клетками. На 3-м месяце эпителий преобразуется в призматический. Эпителий амниона в области плацентарного диска, выполняет секреторную функцию, резорбцию околоплодных вод.

В соединительнотканной строме амниотической оболочки различают базальную мембрану, слой плотной волокнистой соединительной ткани и губчатый слой из рыхлой волокнистой соединительной ткани.

Желточный мешок— депонирующий питательные вещества, необходимые для развития зародыша. Он образован внезародышевой энтодермой мезодермой. Появившись на 2-й неделе. В стенке желточного мешка развиваются кровяные островки, формирующие первые клетки крови и первые кровеносные сосуды.

Над желточным мешком, формируется кишечная трубка. Связь зародыша с желточным мешком остается в виде полого канатика, называемого желточным стебельком.

Пупочный канатикттяж, соединяющий зародыш (плод) с плацентой. Он покрыт амниотической оболочкой и рудиментами желточного мешка и аллантоиса.

Слизистая соединительная ткань, обеспечивает упругость канатика, предохраняет пупочные сосуды от сжатия, обеспечивая эмбриона питательными веществами, кислородом.

В начале 3-й недели в ворсинки хориона врастают кровеносные капилляры и формируются третичные ворсинки.

Работа ЦНС обеспечивает в организме большое количество связей, которые выполняют две основные функции: контроль мышечной активности (двигательный рефлекс) и  обеспечение сенсорного восприятия (чувственные рефлексы) и высших психических функций: память, речь, эмоции.

Функции substantia grisea обусловлены местом его расположения, например:

  1. В коре головного мозга субстанция отвечает за связь организма с внешним миром, а также несет информацию и регулирует деятельность внутренних органов, отвечает за обеспечение высшей нервной деятельности, благодаря чему человек способен мыслить, запоминать, воспринимать и т.д.
  2. В продолговатом мозге ядра субстанции регулируют двигательные процессы, равновесие, обеспечивают координацию движений, а также регулируют обмен веществ, дыхательные процессы и кровоснабжение.
  3. В коре мозжечка серые ядра отвечают за координацию движений и ориентацию в пространстве.
  4. В промежуточном мозге ядра отвечают за контроль деятельности внутренних органов, регулируют рефлексы и температуру тела.
  5. В конечном мозге ядра обеспечивают двигательный, рефлекторный контроль и регулировку высших психических функций: связная речь, зрение, обоняние, вкусовые ощущения, слух, осязание.

Спинной мозг – сложная структура, которое несет следующие функции: рефлекторная, двигательная, сенсорная и проводниковая. Первые три функции возложены на серое, а третья – белое вещество.

  1. Рефлекторная функция – регулирование безусловных рефлексов: сосательный рефлекс, коленный рефлекс, мгновенная реакция на болевые раздражители и т.д.
  2. Двигательная функция – контролирование мышечных рефлексов, связанных с двигательной системой. Соответствующие клетки спинного мозга отправляют сигналы конкретной группе мышц, побуждая к тому или иному действию, благодаря чему мы можем целенаправленно поворачивать голову, двигать шеей, поднимать и опускать руки, ходить.
  3. Сенсорная функция –  передача импульса, идущего от афферентных волокон туловища, к отделам головного мозга, откуда идет команда, содержащая реакцию на раздражитель.
  4. Проводниковая функция – обеспечение прохождения импульса к  головному мозгу, а оттуда  – прохождение команды действия, идущей к соответствующему органу. Регулируется белой субстанцией.

Серая субстанция обеспечивает нормальную жизнедеятельность человека, его взаимодействие с внешним миром, виды человеческой деятельности, является основой когнитивного и сенсорного восприятия, а также основой двигательной, рефлекторной, регуляторной и  всех психических функций.

Химический состав клетки. Химическая организация клетки

Органогены — химические элементы, входящие в состав всех органических соединений и составляющие около 98% массы клетки.

Кислород 65—75 Входит в состав большинства органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды.
Углерод 15—18 Входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3входит в состав минеральных скелетов.
Водород 8—10 Входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
Азот 2—3 Входит в состав аминокислот, белков (в том числе ферментов и гемоглобина), нуклеиновых кислот, хлорофилла, некоторых витаминов.
Важно  Препараты от бессонницы: таблетки для хорошего сна, лучшие лекарства без рецептов, привыкания

Элементы, представленные в клетке в меньшем количестве — десятые и сотые доли процента.

Кальций 0,04—2,00 Содержится в мембране клетки, межклеточном веществе и костях. Участвует в регуляции внутриклеточных процессов, поддержания мембранного потенциала, передаче нервных импульсов, необходим для мышечного сокращения и экзоцитоза . Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
Фосфор 0,2—1,0 Входит в состав АТФ в виде остатка фосфорной кислоты (PO43-). Содержится в костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).
Калий 0,15—0,4 Участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах. Участвует в фотосинтезе.
Сера 0,15—0,2 Содержится в некоторых аминокислотах, ферментах, тиамине . В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.
Хлор 0,05—0,1 Участвует в формировании осмотического потенциала плазмы крови и других жидкостей в виде аниона. Содержится в желудочном соке.
Натрий 0,02—0,03 Участвует в поддержании мембранного потенциала , генерации нервного импульса, процессах осморегуляции(в том числе в работе почек у человека) и создании буферной системы крови.
Магний 0,02—0,03 Кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий , германий , йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец , никель , рутений , селен , фтор (зубная эмаль), медь , хром , цинк , молибден (участвует в связывании атмосферного азота), бор (влияет на ростковые процессы у растений).

Ультрамикроэлементы составляют менее 0,000001 % в организмах живых существ, к ним относят золото , серебро , которые оказывают бактерицидное воздействие, ртуть , подавляющую обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Также к ультрамикроэлементам относят платину и цезий , бериллий , селен , радий и уран . Функции ультрамикроэлементов ещё малопонятны.

Металлы в таблице Менделеева

Серое вещество и его роль в жизнедеятельности человекаВ системе Менделеева сплавы имеют преобладающее число и список их весьма велик – они начинаются с Бора (В) и заканчиваются полонием (Po) (исключением являются германий (Ge) и сурьма (Sb)). У этой группы есть характерные признаки, они разделены на группы, но их свойства при этом неоднородны. Характерные их признаки:

  • пластичность;
  • электропроводимость;
  • блеск;
  • легкая отдача электронов;
  • ковкость;
  • теплопроводность;
  • твердость (кроме ртути).

Из-за различной химической и физической сути свойства могут существенно отличаться у двух представителей этой группы, не все они похожи на типичные природные сплавы, к примеру, ртуть – это жидкая субстанция, но относится к данной группе.

Серое вещество и его роль в жизнедеятельности человекаВ обычном своем состоянии она жидкая и без кристаллической решетки, которая играет ключевую роль в сплавах. Только химические характеристики роднят ртуть с данной группой элементов, несмотря на условность свойств этих органических соединений. То же самое касается и цезия – самого мягкого сплава, но он не может в природе существовать в чистом виде.

Некоторые элементы такого типа могут существовать только доли секунды, а некоторые не встречаются в природе совсем – их создали в искусственных условиях лаборатории. У каждой из групп металлов в системе есть свое название и признаки, которые отличают их от других групп.

При этом отличия у них весьма существенные. В периодической системе все металлы располагаются по количеству электронов в ядре, т.е. по увеличению атомной массы. При этом для них характерно периодическое изменение характерных свойств. Из-за этого в таблице они не размещаются аккуратно, а могут стоять неправильно.

Серое вещество и его роль в жизнедеятельности человекаВ первой группе щелочей нет веществ, которые бы встречались в чистом виде в природе – они могут пребывать только в составе различных соединений.

Как отличить металл от неметалла?

Как определить металл в соединении? Существует простой способ определения, но для этого необходимо иметь линейку и таблицу Менделеева. Для определения надо:

  1. Провести условную линию по местам соединения элементов от Бора до Полония (можно до Астата).
  2. Все материалы, которые будут слева линии и в побочных подгруппах – металл.
  3. Вещества справа – другого типа.

Однако у способа есть изъян – он не включает в группу Германий и Сурьму и работает только в длинной таблице. Метод можно использовать в качестве шпаргалки, но чтобы точно определить вещество, следует запомнить список всех неметаллов. Сколько их всего? Мало – всего 22 вещества.

В любом случае, для определения природы вещества необходимо рассматривать его в отдельности. Легко будет элементы, если знать их свойства

Важно запомнить, что все металлы:

  1. При комнатной температуре – твердые, за исключением ртути. При этом они блестят и хорошо проводят электрический ток.
  2. У них на внешнем уровне ядра меньшее количество атомов.
  3. Состоят из кристаллической решетки (кроме ртути), а все другие элементы имеют молекулярную или ионную структуру.
  4. В периодической системе все неметаллы – красного цвета, металлы – черного и зеленого.
  5. Если двигаться слева направо в периоде, то заряд ядра вещества будет увеличиваться.
  6. У некоторых веществ свойства выражены слабо, но они все равно имеют характерные признаки. Такие элементы относятся к полуметаллам, например Полоний или Сурьма, они обычно располагаются на границе двух групп.

Важно запомнить, что при перемещении в таблице сверху вниз становятся сильнее неметаллические свойства веществ, поскольку там располагаются элементы, которые имеют отдаленные внешние оболочки. Их ядро отделено от электронов и поэтому они притягиваются слабее

Где находится серое вещество

Серое вещество головного мозга представлено главным образом скоплением большого количества нейронов с безмиелиновыми аксонами, вплетенными в глиальные ткани, их дендридами и кровеносными капиллярами, которые обеспечивают их метаболизм.

Наибольшее скопление нейронов серого цвета образует кору больших полушарий, которая покрывает поверхность конечного отдела. Толщина этой структуры составляет не более 0,5 см на всем протяжении, но занимает более 40% объема конечного мозга, и при этом ее поверхность во много раз превышает плоскость больших полушарий. Такая характерная обуславливается наличием морщин и извилин, в которых содержится до 2/3 площади всей коры.

Также скопления серого вещества в головном мозге образуют особые нервные центры или ядра, которые имеют характерную форму и свое функциональное предназначение. Особенностью строения этой структуры является то, что под понятием «ядро» подразумевается парное или дисперсное образование из клеток нейронов, не имеющих миелиновую оболочку.

Существует большое количество ядер нервной системы, которые для общего понятия и легкости восприятия принято идентифицировать соответствующие той операции, которую они выполняют, а также их внешнему виду. Такое распределение не всегда корректно отображает действительность, так как головной мозг является малоизученной структурой ЦНС и иногда ученые ошибаются.

Основное скопление ядер находится внутри ствола, например, в таламусе или гипоталамусе. При этом в переднем отделе располагаются базальные ганглии, которые в какой-то степени влияют на эмоциональное поведение человека, участвуют в поддержании мышечного тонуса.

Серое вещество мозжечка, наподобие коры конечного отдела мозга, покрывает полушария и червь по периферии. Также его отдельные образуют парные ядра в глубине тела этого рудимента.

Анатомически в нем выделяют следующие виды ядер:

  • Зубчатое. Располагается в нижней части белого вещества мозжечка, его проводящие пути отвечают за двигательную функцию скелетных мышц, а также за зрительно-пространственную ориентацию человека в пространстве.
  • Шаровидное и пробковидное. Обрабатывают информацию, полученную от червя, а также получают афферентные сигналы от частей мозга, отвечающие за соматосенсорные, слуховые и визуальные данные.
  • Ядро шатра. Находится в шатре червя мозжечка и принимает информацию о положении тела человека в пространстве согласно полученным данным от органов чувств и вестибулярного аппарата.

Характерной особенностью строения спинного мозга является то, что серая субстанция в виде ядер находится внутри белого компонента, но при этом является его неотъемлемой частью. Наиболее детально такое расположение можно увидеть при изучении спинного отдела ЦНС в поперечном разрезе, где наглядно будет виден четкий переход серого вещества в белое от центра к периферии.

Примечания

  1. Худайбердиев, Х. Х. Нейрохирургическая анатомия чёрного вещества головного мозга: автореф. дисс. … канд. мед наук / Х. Х. Худайбердиев. — Ленинград, 1970. — 15 стр
  2. . Дата обращения 15 августа 2013.
  3.  (англ.). www.sciencedirect.com. Дата обращения 12 июня 2018. (недоступная ссылка)
  4. . Дата обращения 17 марта 2013.
  5. . Дата обращения 19 марта 2013. (недоступная ссылка)
  6. Шаблон:Better source
  7. Марков А. Эволюция человека. Книга 2. Обезьяны, нейроны и душа. — Corpus, 2011. — Т. 2. — 512 с. — (Династия). — 5000 экз. — ISBN 978-5-271-36294-1, 978-5-17-078089-1, 978-5-17-078089-1.
  8.  (недоступная ссылка). Дата обращения 19 марта 2013.
  9. ↑ Яхно Н. Н., Штульман Д. Р. Болезни нервной системы. — М.: Медицина, 2001. — Т. 2. — С. 76-95. — 744 с. — ISBN 5-225-04540-5
  10. Яхно Н. Н., Штульман Д. Р. Болезни нервной системы. — М.: Медицина, 2001. — Т. 2. — С. 76-95. — 744 с.
  11. Справочное руководство по психофармакологическим и противоэпилептическим препаратам, разрешенным к применению в России / Под ред. С. Н. Мосолова. — 2-е, перераб. — М.: «Издательство БИНОМ», 2004. — С. 17. — 304 с. — 7000 экз. — ISBN 5-9518-0093-5.
  12. ↑  (недоступная ссылка). Дата обращения 18 марта 2013.
  13. .
  14. .
  15. ↑  (недоступная ссылка). Дата обращения 18 марта 2013.
  16.  (недоступная ссылка). Дата обращения 18 марта 2013.
  17.  (недоступная ссылка). Дата обращения 18 марта 2013.
  18.  (недоступная ссылка). Дата обращения 18 марта 2013.
  19.  (недоступная ссылка). Дата обращения 18 марта 2013.
  20.  (недоступная ссылка). Дата обращения 18 марта 2013.
  21.  (недоступная ссылка). Дата обращения 18 марта 2013.
  22.  (недоступная ссылка). Дата обращения 18 марта 2013.
  23.  (недоступная ссылка). Дата обращения 18 марта 2013.
  24. ↑  (недоступная ссылка). Дата обращения 18 марта 2013.
  25.  (недоступная ссылка). Дата обращения 18 марта 2013.
  26.  (недоступная ссылка). Дата обращения 18 марта 2013.
  27.  (недоступная ссылка). Дата обращения 18 марта 2013.
  28.  (недоступная ссылка). Дата обращения 18 марта 2013.
  29.  (недоступная ссылка). Дата обращения 18 марта 2013.
  30.  (недоступная ссылка). Дата обращения 27 марта 2013.
  31.  (недоступная ссылка). Дата обращения 27 марта 2013.
  32. А.П.Ашмарин. Нейрохимия:учебник для биологических и медицинских вузов / Под ред. акад. РАМН А.П.Ашмарина и проф.П.В.Стукалова. — М.: Издательство Института биомедицинской химии РАМН, 1996. — 470 с. — ISBN 5-900760-02-2.
  33. . DrugBank. University of Alberta (8 февраля 2013). Дата обращения 13 октября 2013.

Фосфор и его соединения

Ортофосфорную кислоту применяют как реагент в неорганическом и органическом синтезе, полупродукт для получения минеральных удобрений, как компонент антикоррозийных покрытий, в пищевой промышленности и т. д.

Особое значение имеют фосфорсодержащие минеральные удобрения. Фосфор является необходимым элементом для жизнедеятельности растений, улучшения качества почв.

Соли фосфорной кислоты входят в состав азотно-фосфорных и азотно-фосфорно-калийных удобрений. Из них отметим аммофос, представляющий смесь моно- и диафосфатов аммония NH4H2PO4 и (NH4)2HPO4, а также нитрофоску — смесь NH4H2PO4, (NH4)2HPO4, CaHPO4, NH4NO3, KNO3, KCl.

Фосфор относится к органогенам. Его соединения составляют основу скелета и зубов животных и человека. Фосфор входит в состав белков и нуклеиновых кислот. Сахара и жирные кислоты могут быть использованы клетками в качестве источника энергии только при предварительном фосфорилировании.

Огромный интерес представляют фосфорорганические соединения. Среди них найдены эффективные лекарственные препараты, химические средства защиты растений. Наиболее токсичные и эффективные боевые отравляющие вещества (зарин, зоман, VX) также являются фосфорорганическими соединениями. Химия фосфорорганических соединений представляет собой огромный самостоятельный раздел элементоорганической химии.

Из неорганических соединений фосфора в медицинской практике применяют фосфаты алюминия AlPO4 и цинка Zn3(PO4)2, которые входят в состав фосфат-цементов, применяемых в стоматологии в качестве пломбировочного материала.

Задние мозговые ткани

Непосредственно над продолговатым мозгом находиться мост, а справа мозжечок. Первый отдел представлен в виде валика светлого оттенка. Он связан с мозговыми ножками и myelencephalon.

Поперечные волокна разделяют мост на такие части:

  • Вентральная (желудочная). В этом участке substantia alba представлена преимущественно проводящими волокнами, а substantia grisea имеет в здесь свои ядра;
  • Дорсальная (спинная). Она состоит из таких элементов:
    • Переключательные ядра;
    • Сетевидное образование;
    • Сенсорные системы;
    • Нервные пути.

Мозжечок расположился сразу под затылочной частью мозга. Он состоит из 2 полушарий и срединной части. Серое вещество представлено в виде ядер (зубчатых, пробковидных, шаровидных, шатровидных) и коры. Белая субстанция находится под темной оболочкой. Располагается во всех извилинах и преимущественно состоит из волокон, которые выполняют следующие цели:

  • Связывают мозговые доли и извилины;
  • Следуют к ядрам, локализованным внутри;
  • Связывают отделы.

Расположение в коре больших полушарий и базальных ядрах

Большие полушария конечного мозга разделяет щель, а соединяются они за счет мозолистого тела и спаек. Их большая часть — это плащ, поверхность которого называется неокортексом — новой корой, это действительно филогенетически новейшая структура, где локализованы центры всех ВПФ, включая те, что позволили сформироваться второй сигнальной системе, которая, согласно теории Дарвина, делает человека высшим звеном эволюции. Она покрыта всем известными извилинами, которые образовывают сложный узор из борозд и валиков. Толщина серого вещества здесь составляет всего 1,3 — 4,5 мм, или шесть нейронных слоев.

Каждое полушарие разделено на крупные участки — доли. Выделяют пять долей, образующих дольки — более мелкие участки, и извилины. Рисунок, который образуют извилины, различается по форме у каждого человека, даже у двух половинок одного мозга выглядит неодинаково.

Полезно узнать:  Белое вещество головного мозга: строение, функции

Также эта субстанция находится в базальных ядрах, называемых еще подкорковыми образованиями, или старым мозгом. Считается, что здесь локализованы животные инстинкты, так как старый мозг позволяет автоматически принимать решения в сложной ситуации.

Здесь же находится обонятельный мозг — самое древнее образование. Орган обоняния является основным органом чувств у рыб и животных. Когда далекие предки человека вышли из воды насушу, выживали те виды, которые строили свое поведение на основе обоняния: оно помогало находить еду, полового партнера, вовремя убегать от врага. Затем постепенно из этого участка мозга развились другие структуры, в частности, лимбическая система, отвечающая за эмоции. Сейчас обоняние уже не играет жизненно важную роль, человек может без него выжить, однако, его эмоции будут значительно обеднены.

^

Строение белковых молекул

В настоящее время белковые молекулы изучены достаточно хорошо. На основе имеющихся данных сформулировано современное определение белков.

Белки — это высокомолекулярные органические соединения, построенные из аминокислот, соединенных пептидными связями, и имеющие большую молекулярную массу и сложную структурную организацию.

Исходя из методических соображений, в строении белковых молекул выделяют несколько уровней организации: первичный , вторичный , третичный и четвертичный.

Первичная структура

Формирование белковых молекул начинается с соединения аминокислот друг с другом. Это первый уровень или первичная структура белка.

Первичная структура белка — это нолинентидная цепь, в которой аминокислоты соединены пептидными связями.

Установление первичной структуры белка требует выполнения нескольких операций в определенной последовательности, которые перечислены в табл. 4.2.

Алгоритм действий при определении первичной структуры белка

Выполняемая операция

Цель и сущность превращения

Разрыв S-S-мости ков (если они есть)

Разворачивание полипептидной цепи. Осуществляют окислением S—S-мостиков иадмуравьиной кислотой до SO:jH-rpynn, которые не разрушаются при дальнейшем анализе

Частичный гидролиз но- линеитидных цепей

Укорачивание аминокислотных последовательностей, что облегчает их дальнейшую расшифровку. Осуществляют селективным ферментативным гидролизом (трипсином или химотрипсином) или химическими агентами (бром- циаиом, 2,4-динитрофторбензолом и др.)

Фракционирование полученных пептидов

Отделение полученных полипептидиых цепей друг от друга. Осуществляют методом электрофореза

Расшифровка аминокислотной последовательности в коротких пептидах

Определение первичной структуры в отдельных поли- пептидных цепях. Осуществляют масс-спектрометричес- ким методом или с использованием секвенатора

Белое вещество в спинном мозге

Белое вещество присутствует в теле человека не только в головном мозге, но и в спинном. Однако в этом отделе нервной системы человека белое вещество находится вокруг серого, снаружи него. Здесь оно призвано обеспечить связь с некоторыми участками головного мозга (например, двигательного центра), а также взаимосвязь отделов спинного мозга. «Substantia alba» или белое вещество – это жидкость, которая занимает полость между базальными ядрами и «substantia grisea». Белое вещество состоит из множества нервных волокон, являющихся проводниками, которые расходятся в разных направлениях. К его главным функциям можно отнести не только его проводимость нервных импульсов, но также создает безопасную среду для функционирования ядер и других частей cerebrum (в переводе с латыни «мозг»). Белое вещество полностью формируется у людей в первые шесть лет их жизни.

В медицинской науке принято подразделять нервные волокна на три группы:

  1. Ассоциативные волокна, которые, в свою очередь, также бывают разных типов – короткие и длинные, все они сосредоточены в одном полушарии, но выполняют разную функцию. Короткие соединяют соседние извилины, а длинные, соответственно, держат связь более отдаленных участков. Пути ассоциативных волокон таковы — верхний продолговатый пучок лобной доли к височной, теменной и затылочной коре; крючковидный пучок и пояс; нижний продольный пучок от лобной доли к затылочной коре.
  2. Комиссуральные волокна отвечают за функцию соединения двух полушарий, а также за сочетаемость их функций в деятельности мозга. Данная группа волокон представлена передней спайкой, спайкой свода и мозолистым телом.
  3. Проекционные волокна связывают кору с другими центрами центральной нервной системы, вплоть до спинного мозга. Таких типов волокон существует несколько: одни отвечают за двигательные импульсы, посылаемые к мышцам человеческого тела, другие ведут к ядрам черепных нервов, третьи – от таламуса к коре и обратно, а последние от коры к ядрам моста.

Белое вещество полушарий головного мозга «Substantia alba» в целом отвечает за координацию всей жизнедеятельности человека, поскольку именно эта часть обеспечивает связь всем участкам нервной цепочки. Белое вещество:

  • связывает воедино работу обоих полушарий;
  • играет важную роль для передачи данных от коры больших полушарий к участкам нервной системы;
  • обеспечивает контакт зрительного бугра с корой cerebrum;
  • соединяет извилины в обеих частях полушарий.
Оцените статью
Добавить комментарий