Как нейрон осуществляет передачу информации

Значение нейронных связей

В книге «От нейрона к мозгу», написанной учеными-нейробиологами Дж. Николлсом, А. Мартином, Б. Валласом, П. Фуксом, научно обосновано значение межнейронного взаимодействия, как ведущего фактора формирования высших психических функций и саморазвития личности.

Нейронные связи играют решающую роль в формировании и развитии интеллекта, появлении устойчивых привычек. Человек рождается с огромным запасом нейронов и малым числом связей между ними. В ходе взросления, жизнедеятельности, взаимодействия с окружающей действительностью, накопления опыта количество связей увеличивается, что обуславливает интеллектуальные и физические свойства личности, ее поведение и уровень здоровья.

Человек способен создавать новые нейронные связи на протяжении всей жизни. Объекты окружающего мира воздействуют на органы чувств, вызывая ответные реакции мозга. Вокруг нейронов, которые постоянно работают, образуется слой – миелиновая оболочка, улучшающая способность нервных волокон проводить электрические сигналы. Клетки, покрытые миелиновым слоем – белые, не покрытые – серые, поэтому мозговое вещество бывает серым и белым.

Основные реакции, возникающие на внешние раздражители, формируются к 7 годам. В этом возрасте выработка миелина сокращается. Семилетний ребенок уже знает, что огонь вызывает ожог, а неосторожные движения приводят к падению. Основной ресурс знаний сформирован, что ассоциируется с замедлением образования новых нейронных связей. Выработка миелина вновь увеличивается в период полового созревания, когда меняются ментальные представления человека.

Гениальность часто проявляется в детском и подростковом возрасте, что коррелирует с повышенной выработкой миелина и созданием мощных, разветвленных нейронных сетей. Количество синаптических связей (взаимодействие между разными нейронами) увеличивается вследствие процесса накопления опыта и получения новых знаний. У нейрона могут образовываться новые отростки в результате активной стимуляции электрическими импульсами.

Как нейрон осуществляет передачу информации

Разрастание синаптических связей прослеживается в поведении и реакциях человека на условия и обстоятельства внешнего мира. К примеру, любитель собак оценивает окружающую действительность с учетом привязанности к четвероногим питомцам. Религиозные люди относятся к объектам внешнего мира, опираясь на высокие моральные принципы. Это указывает на образование связи между двумя посторонними на первый взгляд идеями и отражает появление новых синаптических контактов.

Создание новых нейронных связей возможно, если человек постоянно занимается саморазвитием – изучает иностранные языки, осваивает новые знания и навыки (живопись, вышивка и вязание, литературное мастерство, занятия спортом, интеллектуальные игры – шахматы и шашки), овладевает новой профессией, меняет привычки.

Мозг нуждается в тренировке, которая провоцирует рост дендритов и расширение взаимодействий между клетками нервной ткани. Восприятие внешнего мира, успехи, состояние здоровья, настроение, удовлетворенность положением в социуме и жизнью в целом зависят от нашего сознания.

Посредством нейронных связей осуществляется управление работой внутренних органов, двигательной активностью, когнитивными процессами. Нейронные связи регулируют поведение человека. Чем больше нейронных связей, тем выше интеллектуальные и физические способности индивида.

Просмотров: 688

Виды нейронов

Нейроны находятся не только в головном мозге, где они, взаимодействуя, образуют центральную нервную систему. Нейроны расположены во всех органах нашего тела, в мышцах и связках на поверхности кожи. Особенно много их в рецепторах, то есть органах чувств. Разветвленная сеть нервных клеток, которая пронизывает все тело человека – это периферическая нервная система, которая выполняет не менее важные функции, чем центральная. Все разнообразие нейронов разделяют на три основных группы:

  • Аффекторные нейроны получают информацию от органов чувств и в виде импульсов по нервным волокнам поставляют ее к головному мозгу. Эти нервные клетки имеют самые длинные аксоны, так как их тело находится в соответствующем отделе головного мозга. Существует строгая специализация, и звуковые сигналы поступают исключительно в слуховой отдел мозга, запахи – в обонятельный, световые – в зрительный и т. д.
  • Промежуточные или вставочные нейроны занимаются обработкой информации, поступившей от аффекторов. После того как информация оценена, промежуточные нейроны подают команду расположенным на периферии нашего тела органам чувств и мышцам.
  • Эфферентные или эффекторные нейроны передают эту команду от промежуточных в виде нервного импульса к органам, мышцам и т. д.
Важно  Как соматическая нервная система управляет произвольными движениями

Самой сложной и наименее понятной является работа промежуточных нейронов. Они отвечают не только за рефлекторные реакции, такие, например, как отдергивание руки от горячей сковородки или моргание при вспышке света. Эти нервные клетки обеспечивают такие сложнейшие психические процессы, как мышление, воображение, творчество. И как мгновенный обмен нервными импульсами между нейронами превращается в яркие образы, фантастические сюжеты, гениальные открытия, да и просто в размышления о тяжелом понедельнике? Это главная тайна головного мозга, к разгадке которой ученые даже пока не приблизились.

Единственное, что удалось выяснить, что разные виды мыслительной деятельности связаны с активностью разных групп нейронов. Мечты о будущем, заучивание стихотворения, восприятие близкого человека, обдумывание покупок – все это отражается в нашем мозге как вспышки активности нервных клеток в различных точках коры головного мозга.

Развитие

Закладка нервной ткани происходит на третьей неделе эмбрионального периода. В это время формируется пластинка. Из нее развиваются:

  • Олигодендроциты.
  • Астроциты.
  • Эпендимоциты.
  • Макроглия.

В ходе дальнейшего эмбриогенеза нервная пластинка превращается в трубку. Во внутреннем слое ее стенки располагаются стволовые вентрикулярные элементы. Они пролиферируют и отходят кнаружи. В этой области часть клеток продолжает делиться. В результате они разделяются на спонгиобласты (компоненты микроглии), глиобласты и нейробласты. Из последних формируются нервные клетки. В стенке трубки выделяется 3 слоя:

  • Внутренний (эпендимный).
  • Средний (плащевой).
  • Внешний (краевой) – представлен белым мозговым веществом.

На 20-24 неделе в краниальном сегменте трубки начинается образование пузырей, которые являются источником формирования головного мозга. Оставшиеся отделы служат для развития спинного мозга. От краев нервного желоба отходят клетки, участвующие в образовании гребня. Он располагается между эктодермой и трубкой. Из этих же клеток формируются ганглиозные пластинки, служащие основой для миелоцитов (пигментных кожных элементов), периферических нервных узлов, меланоцитов покрова, компонентов APUD-системы.

Классификация

Структурная классификация

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

Безаксонные нейроны — небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.

Униполярные нейроны — нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге. Многие морфологи считают, что униполярные нейроны в теле человека и высших позвоночных не встречаются.

Биполярные нейроны — нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях.

Мультиполярные нейроны — нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе.

Псевдоуниполярные нейроны — являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (то есть находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Важно  Современный взгляд на барбитураты — наркотик или все же лекарство?

Функциональная классификация

По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный, рецепторный или центростремительный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный, моторный или центробежный). К нейронам данного типа относятся конечные нейроны — ультиматные и предпоследние — не ультиматные.

Ассоциативные нейроны (вставочные или интернейроны) — группа нейронов осуществляет связь между эфферентными и афферентными.

Секреторные нейроны — нейроны, секретирующие высокоактивные вещества (нейрогормоны). У них хорошо развит комплекс Гольджи, аксон заканчивается аксовазальными синапсами.

Морфологическая классификация

Морфологическое строение нейронов многообразно. При классификации нейронов применяют несколько принципов:

  • учитывают размеры и форму тела нейрона;
  • количество и характер ветвления отростков;
  • длину аксона и наличие специализированных оболочек.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120—150 мкм у гигантских пирамидных нейронов.

По количеству отростков выделяют следующие морфологические типы нейронов:

  • униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге;
  • псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях;
  • биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах — сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Проводящие пути

Как нейрон осуществляет передачу информации

Нервная система имеет свои сферы влияния по всему организму. С помощью проводящих волокон осуществляется нервная регуляция систем, органов и тканей. Мозг, благодаря широкой системе проводящих путей, полностью контролирует анатомическое и функциональное состояние всякой структуры организма. Почки, печень, желудок, мышцы и другие – все это инспектирует головной мозг, тщательно и кропотливо координируя и регулируя каждый миллиметр ткани. А в случае сбоя – корректирует и подбирает подходящую модель поведения. Таким образом, благодаря проводящим путям организм человека отличается автономностью, саморегуляцией и адаптивностью к внешней среде.

Проводящие пути головного мозга

Проводящий путь – это скопление нервных клеток, функция которых заключается в обмене информации между различными участками тела.

  • Ассоциативные нервные волокна. Эти клетки соединяют между собой различные нервные центры, что располагаются в одном полушарии.
  • Комиссуриальные волокна. Эта группа отвечает за обмен информацией между аналогичными центрами головного мозга.
  • Проекционные нервные волокна. Данная категория волокон сочленяет головной мозг со спинным.
  • Экстероцептивные пути. Они несут электрические импульсы от кожи и других органов чувств к спинному мозгу.
  • Проприоцептивные. Такая группа путей проводят сигналы от сухожилий, мышц, связок и суставов.
  • Интероцептивные проводящие пути. Волокна этого тракта берут начало из внутренних органов, сосудов и кишечных брыжеек.

Синапс

Передача сигнала от одного нейрона к другому происходит в специальном контакте между нейронами, в синапсе . Мы рассмотрим только химические синапсы (есть еще электрические), поскольку они весьма распространены в нервной системе и важны для регуляции клеточного метаболизма, доставки питательных веществ .

Чаще всего, химический синапс образован между окончанием аксона одного нейрона и дендритом другого. Его работа напоминает… «переброс» эстафетной палочки, роль которой и играет нейромедиатор — химический посредник передачи сигнала , , .

На пресинаптическом окончании аксона ПД вызывает выброс нейромедиатора во внеклеточную среду — к принимающему нейрону. Последний только этого и ждет с нетерпением: в мембране дендритов рецепторы — ионные каналы определенного типа — связывают нейромедиатор, открываются и пропускают через себя разные ионы. Это приводит к генерации маленького постсинаптического потенциала (ПСП) на мембране дендрита. Он напоминает ПД, но значительно меньше по амплитуде и происходит за счет открывания других каналов. Множество этих маленьких ПСП, каждый от своего синапса, «сбегаются» по мембране дендритов к телу нейрона (зеленые стрелки на рис. 3а) и достигают начального сегмента аксона, где вызывают открывание Na-каналов и «провоцируют» его на генерацию ПД.

Важно  Передний мозг как топ-менеджер высших психологических функций

Такие синапсы называются возбуждающими: они способствуют активации нейрона и генерации ПД. Существуют также и тормозящие синапсы. Они, наоборот, способствуют торможению и препятствуют генерации ПД. Часто на одном нейроне есть и те, и другие синапсы

Определенное соотношение между торможением и возбуждением важно для нормальной работы мозга, формирования мозговых ритмов, сопровождающих высшие когнитивные функции

Как это ни странно, выброс нейромедиатора в синапсе может и не произойти вовсе — это процесс вероятностный , . Нейроны так экономят энергию: синаптическая передача и так обусловливает около половины всех энергозатрат нейронов . Если бы синапсы всегда срабатывали, вся энергия пошла бы на обеспечение их работы, и не осталось бы ресурсов для других процессов. Более того, именно низкая вероятность (20–40%) выброса нейромедиатора соответствует наибольшей энергетической эффективности синапсов. Отношение количества полезной информации к затрачиваемой энергии в этом случае максимально , . Так, выходит, что «неудачи» играют важную роль в работе синапсов и, соответственно, всего мозга. А за передачу сигнала при иногда «не срабатывающих» синапсах можно не беспокоиться, так как между нейронами обычно много синапсов, и хоть один из них да сработает.

Различные комбинации быстрых AMPA-, более медленных NMDA- и метаботропных рецепторов позволяют нейронам отбирать и использовать наиболее полезную для них информацию, важную для их функционирования . А «бесполезная» информация отсеивается, она не «воспринимается» нейроном. В таком случае не приходится тратить энергию на обработку ненужной информации. В этом и состоит еще одна сторона оптимизации синаптической передачи между нейронами.

Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде «Прозака» блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Сейчас исследователи, которые изучают пограничные состояния человеческой психики, пробуют разобраться, как же это всё влияет на рассудок человека. Ну а пока же у нас нет ответа на такой фундаментальный вопрос: что же заставляет нейрон создавать потенциал действия? Пока механизм «запуска» этой клетки для нас является секретом. Особенно интересным с точки зрения данной загадки является работа нейронов главного мозга.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Оцените статью
Добавить комментарий