Роль аксона в функционировании нервной системы

Принципы координации рефлекторной деятельности.

Координация рефлекторной деятельности — это согласование деятельности нейронов и нервных процессов с целью наиболее адекватного ответа на действие актуального в данный момент раздражителя. Координация рефлексов происходит постоянно в любом нервном центре. Она осуществляется по следующим принципам:

  • Принцип доминанты. Доминанта — это господствующие очаги возбуждения в ЦНС, которые подчиняют себе деятельность других рефлекторных центров. Она формируется под влиянием различных афферентных стимулов и поддерживается в соответствии с их актуальностью для организма в данный момент времени. Например, пищевая доминанта, половая доминанта и т.д.
  • Облегчение рефлексов — состоит в том, что слабое раздражение двух рецептивных полей, каждое из которых не вызвало рефлекторной реакции само по себе, при одновременном действии вызывает рефлекторную реакцию. В основе этого явления лежит суммирование ВПСП в нейронах нервного центра.
  • Окклюзия рефлекса — наблюдается при одновременном сильном раздражении двух рецептивных полей. При этом рефлекторный ответ является слабее, чем их сумма.
  • Принцип обратной связи — заключается в том, что при осуществлении рефлекса процесс не ограничивается выполнением эффектором определенного действия, а приводит к возбуждению в нем собственных рецепторов (не тех, которые вызвали данный рефлекс). Эти рецепторы называют вторичными. От них афферентная информация о последствиях действия эффектора поступает в центр рефлекса и корректирует его. Афферентные сигналы от вторичных рецепторов называют обратной афферентацией (обратной связью) в отличие от первичной афферентации, которая вызвала рефлекс. Благодаря обратной связи интенсивность и последовательность включения различных групп нейронов становится строго согласованной с результатом действия, то есть осуществляется контроль за эффективностью реакции. Например, при повреждении проприоцептивной чувствительности мышц движения становятся очень неточными вследствие потери обратной связи.
  • Принцип общего конечного пути. Это понятие ввел в физиологию Шерингтон. Таким конечным путем, к которому сходятся многочисленные возбуждения от различных центров, он считал мотонейроны спинного мозга. В большинстве нейронов ЦНС количество афферентных входов значительно превышает количество эфферентных выходов, поэтому нейроны, которые являются общим конечным путем, интегрируют на себе возбуждающие и тормозные процессы вышерасположенных нейронов. Эти процессы конкурируют за овладение общим конечным путем.
  • Реципрокное взаимодействие рефлексов — заключается в том, что возбуждение одной группы нейронов (нервного центра) сопровождается одновременным торможением другой группы нейронов (антагонистического нервного центра, АНС). В основе этого взаимодействия лежит реципрокное торможение. На реципрокных взаимоотношениях между группами нейронов основываются так называемые ритмические рефлексы, например ходьба у людей или почесывание у животных, когда возбуждение нейронов, контролирующих сокращение мышц-сгибателей, сопровождается торможением нейронов, контролирующих мышцы-разгибатели. Этот же принцип проявляется и в координации высшими вегетативными центрами (гипоталамус, лимбическая система) баланса между периферическими звеньями АНС. Если возбуждено симпатичное звено АНС (например, во время стресса), то тормозится активность парасимпатического звена. Противоположные соотношения наблюдаются между этими звеньями в состоянии покоя.

Центральная нервная система

Состоит из головного и спинного мозга. Является ведущим центром в организме человека, отвечающим за мышление, координацию движений, психическое состояние и взаимодействие с окружающим миром.

Спинной мозг расположен в позвоночном столбе, имеет вид длинного тяжа. Он разделен на две симметричные половины: переднюю и заднюю борозды. По центру проходит спинномозговой канал, заполненный жидкостью – ликвором.

Вокруг спинномозгового канала расположено серое вещество. На срезе он имеет вид бабочки, образован телами нервных клеток. Спинной мозг снаружи покрывает белое вещество, состоит из отростков нейронов, образует проводящие пути.

Роль аксона в функционировании нервной системыРис. 4. Поперечный срез спинного мозга

Поперечный срез спинного мозга имеет боковые и передние рога. В задних находится ядро чувствительного нейрона, а в передних нейроны двигательного центра. В боковых рогах залегают рецепторы симпатической и парасимпатической системы. 

В спинном мозге различают 31 пару нервов. Каждая из начинается двумя корешками, передними (двигательными), задними (чувствительными). На задних корешках располагаются тела чувствительных, называются нервными узлами. Каждая пара спинномозговых нервов отвечает за определенное действие.

Спинной мозг выполняет несколько функций:

  • Рефлекторную – осуществляется соматическими и вегетативными нервами;
  • Проводниковую – осуществляется белым веществом нисходящих и восходящих проводящих путей;

Головной мозг расположен в черепе. Его масса составляет приблизительно 1400-1500 г. Головной мозг разделяют на 5 отделов:

  • Передний;
  • Задний;
  • Средний;
  • Промежуточный;
  • Продолговатый.

Роль аксона в функционировании нервной системы

Эволюционно сложившейся структурой головного мозга считают:

  • Продолговатый мозг;
  • Мост;
  • Средний мозг;
  • Промежуточный мозг.

Это начальные структуры развития головного мозга, чуть позже у человека появились большие полушария. Из ствола мозга выходит 12 пар нервов. Продолговатый мозг, является продолжением спинного мозга, выполняют проводниковую и рефлекторную функции. Отвечает за следующие процессы в организме:

  • дыхательные;
  • сердечные сокращения и деятельность сердца;
  • сосудодвигательные;
  • пищевые рефлексы;
  • защитные рефлексы (чихание, кашель и другие);
  • центр изменения тонуса мышц и положения тела.

Задний мозг состоит варолиева моста и мозжечка. Проводящие пути связывают задний мозг с большими полушариями.

Мозжечок отвечает за координацию тела, поддержание равновесия тела. Все позвоночные животные обладают мозжечком, уровень его развития зависит от среды и условий обитания.

Важно  Метасимпатическая нервная система как структура гомеостаза

Средний мозг отвечает за зрение и слух. Он сложился в эволюционный период, и практически не изменился.

Промежуточный мозг разделяют на отделы:

Зрительные бугры (таламус)

Отвечает за все мимические эмоции, рядом прилегает эпифиз и гипофиз. Это железы внутренней секреции.

Надбугорная область (эпиталамус)

Регулирует суточные ритмы, тормозит выработку половых гормонов и гормонов аденогипофиза.

Подбугорная область (гипоталамус)

Контролирует работу вегетативной нервной системы, обмен веществ, гомеостаз, центр сна и бодрствования, эндокринные функции организма. Секретирует вазопрессин и окситоцин.

Коленчатые тела

Представляет собой ретикулярную формацию, состоящую из сети нервов и нейронов, влияющих на активность различных отделов ЦНС.

Передний мозг

Отвечает за зрение и слух, состоит из полушарий, соединенных мозолистым телом. Серое вещество образует кору головного мозга, белое – проводящие пути полушарий.

Кора больших полушарий

Отвечает за зрение, слух, движения, чувствительность кожи и мышц.

Кора больших полушарий имеет площадь 2500 см3. Состоит из борозд и извилин. Разделяют четыре отдела полушарий:

  1. лобную;
  2. теменную;
  3. затылочную;
  4. височную.

Кора больших полушарий отвечает за определенные процессы и имеет следующие зоны:

  • Двигательная. Находится в передней центральной извилине лобной доли.
  • Кожно-мышечной чувствительности. Расположена в задней центральной извилине.
  • Зрительная. Находится в затылочной области.
  • Слуховая. Расположена в височной доле.
  • Центр обоняния и слуха. Расположены на внутренних поверхностях височных и лобных долей.

Работа правого и левого полушария разная. Правое отвечает за мышление, а левое за абстрактное мышление. При повреждении левого полушария происходит потеря речи.

7. Периферическая Нервная Система и её подвиды

Как мы упомянули выше, ПНС отвечает за отправку информации через спинные и спинномозговые нервы. Эти нервы расположены за пределами ЦНС, однако соединяют обе системы. Как и в случае ЦНС, существуют различные заболевания ПНС в зависимости от поражённой зоны.

Соматическая Нервная Система

Отвечает за связь нашего организма с внешней средой. С одной стороны, получает электрические импульсы, с помощью которых контролируется движение скелетных мышц, а с другой — передаёт сенсорную информацию от различных частей тела в Центральную Нервную Систему. Заболеваниями соматической нервной системы являются:

  • Паралич лучевого нерва: происходит повреждение лучевого нерва, который контролирует мускулы руки. Этот паралич приводит к нарушению двигательной и чувствительной функции конечности, поэтому также известен как «висячая рука».
  • Синдром запястного канала или Туннельный синдром: страдает срединный нерв. Заболевание спровоцировано сдавлением срединного нерва между костями и сухожилиями мышц запястья. Это приводит к онемению и неподвижности части кисти руки. Симптомы: боль в запястье и предплечье, судороги, онемение…
  • Синдром ГийенаБарре: Медицинский центр Мэрилендского Университета определяет это заболевание как «тяжёлое расстройство, при котором защитная система организма (иммунная система) по ошибке атакует нервную систему. Это приводит к воспалениям нервов, мышечной слабости и другим последствиям».
  • Невролгия: это сенсорное расстройство Периферической Нервной Системы (приступы сильной боли). Происходит из-за поражения нервов, отвечающих за отправку сенсорных сигналов мозгу. Симптомами являются сильная боль, повышенная чувствительность кожи в зоне прохождения повреждённого нерва.

Роль аксона в функционировании нервной системы

Вы подозреваете у себя или близкого вам человека депрессию? Проверьте прямо сейчас с помощью инновационного нейропсихологического онлайн теста CogniFit на депрессию, присутствуют ли признаки, указывающие на возможность наличия депрессивного расстройства.

Автономная/Вегетативная Нервная Система

Связана с внутренними процессами организма и не зависит от коры головного мозга. Получает информацию от внутренних органов и регулирует их. Отвечает, например, за физическое проявление эмоций. Подразделяется на Симпатическую и Парасимпатическую НС. Обе связаны с внутренними органами и выполняют одни и те же функции, но в противоположной форме (например, симпатический отдел расширяет зрачок, а парасимпатический — сужает его, и т.д.). Болезни, поражающие автономную нервную систему:

  • Гипотония: пониженное артериальное давление, при котором органы нашего тела недостаточно снабжаются кровью. Её симптомы:
    • Головокружения.
    • Сонливость и кратковременная спутанность сознания.
    • Слабость.
    • Дезориентация и даже потеря сознания.
    • Обмороки.
  • Гипертония: Испанский фонд сердца определяет её как «непрерывное и устойчивое повышение артериального давления».

Как мы уже упомянули, Автономная НС подразделяется на два вида:

  1. Симпатическая Нервная Система: регулирует расход энергоресурсов и мобилизует организм в стрессовых ситуациях. Расширяет зрачок, уменьшает слюноотделение, увеличивает частоту сердечных ритмов, расслабляет мочевой пузырь.
  2. Парасимпатическая Нервная Система: отвечает за расслабление и накопление ресурсов. Сужает зрачок, стимулирует слюноотделение, замедляет сердцебиение, сокращает мочевой пузырь. 

Последний абзац вас может немного удивить. Какое отношение к расслаблению и релаксации имеет сокращение мочевого пузыря? И как уменьшение слюноотделения связано с активацией? Дело в том, что речь не идёт о процессах и действиях, требующих активности. Речь идёт о том, что происходит в результате ситуации, которая нас активирует. Например, при нападении на улице:

  • Пульс учащается, появляется сухость во рту, и если мы испытываем сильный страх, мы можем даже обмочиться (представьте себе, каково это — убегать или драться с наполненным мочевым пузырём).
  • Когда опасная ситуация миновала, и мы находимся в безопасности, запускается наша парасимпатическая система. Зрачки возвращаются в нормальное состояние, пульс снижается, и мочевой пузырь начинает работать в обычном режиме.

Важная обёртка

Миелинизация (постепенная изоляция нервных волокон миелином) начинается у людей уже в эмбриональном периоде развития. Первыми этот путь проходят подкорковые структуры. В течение первого года жизни происходит миелинизация отделов периферической и центральной нервной системы, отвечающих за двигательную активность. Миелинизация участков головного мозга, регулирующих высшую нервную деятельность, заканчивается к 12–13 годам. Из этого видно, что миелинизация тесно связана со способностью отделов нервной системы осуществлять специфические для них функции. Вероятно, именно активная работа волокон до рождения запускает их миелинизацию.

Важно  Важные функции твёрдой мозговой оболочки

Дифференцировка клеток — предшественниц олигодендроцитов зависит от ряда факторов, связанных с работой нейронов. В частности, работающие отростки нейронов могут выделять белок нейролигин 3, который способствует пролиферации и дифференциации клеток-предшественниц . В дальнейшем созревание олигодендроцитов происходит за счет ряда других факторов. В статье с характерным названием «Насколько велик миелинизирующий оркестр?» описывается происхождение олигодендроцитов в разных частях мозга . Во-первых, в различных частях мозга олигодендроциты начинают созревать в разное время. Во-вторых, за их созревание отвечают разные клеточные факторы, что тоже зависит от региона нервной системы (рис. 3). У нас может возникнуть вопрос: а сходны ли между собой олигодендроциты, появившиеся с таким расхождением в стартовых данных? И насколько схож у них миелин? В целом, авторы статьи считают, что между популяциями олигодендроцитов из разных участков головного мозга действительно существуют различия, и обусловлены они во многом именно местом закладки клеток, воздействием на них окружающих нейронов. И всё же типы миелина, синтезируемые разными пулами олигодендроцитов, не имеют настолько больших отличий, чтобы они не были взаимозаменяемыми.

Роль аксона в функционировании нервной системы
Рисунок 3. Различия во времени закладки олигодендроцитов в разных отделах головного мозга и в клеточных факторах, влияющих на их развитие.

Сам процесс миелинизации нервных волокон в центральной нервной системе происходит следующим образом (рис. 4). Олигодендроциты выпускают несколько отростков к аксонам разных нейронов. Входя с ними в контакт, отростки олигодендроцитов начинают оборачиваться вокруг них и расползаться по длине аксона. Количество оборотов постепенно увеличивается: в некоторых участках ЦНС их число доходит до 50. Мембраны олигодендроцитов становятся всё более тонкими, распространяясь по поверхности аксона и «выдавливая» из себя цитоплазму. Чем раньше слой миелина был обернут вокруг нервного окончания, тем более тонким он будет. Самый внутренний слой мембраны остается довольно толстым — для осуществления метаболической функции. Новые слои миелина наматываются поверх старых, перекрывая их так, как показано на рисунке 4 — не только сверху, но и увеличивая площадь аксона, покрытую миелином.

Роль аксона в функционировании нервной системы
Рисунок 4. Миелинизация нервного волокна. Мембрана олигодендроцита наматывается на аксон, постепенно уплотняясь с каждым оборотом. Внутренний, прилегающий к аксону слой мембраны остается относительно толстым, что необходимо для выполнения метаболической функции. На разных частях рисунка (а-в) с разных ракурсов показано постепенное наматывание новых слоев миелина на аксон. Красным цветом выделен более толстый, метаболически активный слой, синим — новые уплотняющиеся слои. Внутренний слой миелина (inner tongue на части б) охватывается всё новыми и новыми слоями мембраны не только сверху, но и по бокам (в), вдоль аксона.

Миелинизация нервных волокон олигодендроцитами также значимо зависит от белка нейрегулина 1. Если он не воздействует на олигодендроциты, то в них запускается программа миелинизации, не учитывающая активность нервной клетки. Если же олигодендроциты получили сигнал от нейрегулина 1, то далее они начнут ориентироваться на работу аксона, и миелинизация будет зависеть от интенсивности выработки глутамата и активации им специфических NMDA-рецепторов на поверхности олигодендроцитов . Нейрегулин 1 — ключевой фактор для запуска процессов миелинизации и в случае шванновских клеток .

Нейроны и их роль в нервной системе

Как бы ни было сложно устройство нервной системы, ключевую роль в ней играют крошечные нервные клетки – нейроны. Именно из них состоит серое вещество головного и спинного мозга, они ежесекундно обрабатывают миллионы сигналов, принимают информацию из окружающего мира и сохраняют ее, они составляют нервные волокна, которые обеспечивают связь ЦНС со всеми элементами и частями нашего организма.

Только в головном мозге насчитывается порядка 1011 нервных клеток, каждая из которых может установить до 20 000 связей с другими нейронами. Поэтому утверждение, что оперативная мощность и память мозга взрослого человека намного превышает возможности современного компьютера, это совсем не преувеличение.

Каждая нервная клетка, помимо оболочки и ядра, имеет отростки. Один длинный отросток – аксон – отвечает за передачу сигналов, а множество коротких – дендритов – за их прием. Во время прохождения импульса между аксоном одной нервной клетки и дендритом другой возникает биохимическая реакция и появляется белковая молекула – нейротрансмиттер, выполняющий роль «мостика».

Место соединения аксона и дендрита называется синапс. Именно здесь в белковых молекулах синапсов, как считают ученые, записывается и хранится вся поступающая в мозг информация. Синапсы – основа нашей памяти, и возможности их практически безграничны. Считается, что мозг взрослого человека способен хранить 1019 бит информации, что превышает ее объем в глобальном информационном пространстве интернета.

Нейроны бывают разных видов и выполняют многочисленные функции:

  • принимают сигналы из внешнего мира и от внутренних органов;
  • передают возбуждение и нервные импульсы в пределах нервной системы;
  • осуществляют первичную обработку и фильтрацию сигналов;
  • сохраняют информацию и опыт;
  • занимаются производством белковых соединений и гормонов, необходимых для функционирования головного мозга и организма в целом.
Важно  Что такое синдром Жубер — простыми словами о сложном заболевании

Нейроны – это работяги, они постоянно находятся в действии, поэтому перегрузка нервной системы приводит к их частичной гибели. Но расхожее мнение, что нервные клетки не восстанавливаются, неверно. Есть такой отдел головного мозга – гиппокамп. Он способен ежедневно создавать почти 1400 новых нейронов. Другое дело, что они начинают работать, только когда активизируется деятельность мозга, устанавливаются новые связи, а среднестатистический человек не использует и 10 % своих нервных клеток. С возрастом количество активных нейронов сокращается. Однако дело тут не в их «отмирании», а в том, что снижается умственная активность, а значит и потребность в новых нервных клетках.

Итак, нервная система – это сложнейший механизм, предназначенный для управления нашим организмом и способный решать самые разнообразные задачи. Но как она будет функционировать, во многом зависит от самого человека, точнее от того, как мы эту нервную систему настроим. Все же пульт управление находится не где-нибудь, а в нашем мозгу. Наши мысли, желания, намерения, инстинкты и рефлексы управляют всеми процессами, происходящими в организме. Правда, далеко не всегда это нами осознается.

Что такое нейрон (нейронные связи)

В переводе с греческого нейрон, или как его еще называют неврон, означает «волокно», «нерв». Нейрон – это специфическая структура в нашем организме, которая отвечает за передачу внутри него любой информации, в быту называемая нервной клеткой.

Нейроны работают при помощи электрических сигналов и способствуют обработке мозгом поступающей информации для дальнейшей координации производимых телом действий.

Эти клетки являются составляющей частью нервной системы человека, предназначение которой состоит в том, чтобы собрать все сигналы, поступающие из вне или от собственного организма и принять решение о необходимости того или иного действия. Именно нейроны помогают справиться с такой задачей.

Каждый из нейронов имеет связь с огромным количеством таких же клеток, создаётся своеобразная «паутина», которая называется нейронной сетью. Посредством данной связи в организме передаются электрические и химические импульсы, приводящие всю нервную систему в состояние покоя либо, наоборот, возбуждения.

К примеру, человек столкнулся с неким значимым событием. Возникает электрохимический толчок (импульс) нейронов, приводящий к возбуждению неровной системы. У человека начинает чаще биться сердце, потеют руки или возникают другие физиологические реакции.

Мы рождаемся с заданным количеством нейронов, но связи между ними еще не сформированы. Нейронная сеть строится постепенно в результате поступающих из вне импульсов. Новые толчки формируют новые нейронные пути, именно по ним в течение жизни побежит аналогичная информация. Мозг воспринимает индивидуальный опыт каждого человека и реагирует на него. К примеру, ребенок, схватился за горячий утюг и отдернул руку. Так у него появилась новая нейронная связь.

Стабильная нейронная сеть выстраивается у ребенка уже к двум годам. Удивительно, но уже с этого возраста те клетки, которые не используются, начинают ослабевать. Но это никак не мешает развитию интеллекта. Наоборот, ребенок познает мир через уже устоявшиеся нейронные связи, а не анализирует бесцельно все вокруг.

Даже у такого малыша есть практический опыт, позволяющий отсекать ненужные действия и стремиться к полезным. Поэтому, например, так сложно отучить ребенка от груди — у него сформировалась крепкая нейронная связь между приложением к материнскому молоку и удовольствию, безопасности, спокойствию.

Познание нового опыта на протяжении всей жизни приводит к отмиранию ненужных нейронных связей и формированию новых и полезных. Этот процесс оптимизирует головной мозг наиболее эффективным для нас образом. Например, люди, проживающие в жарких странах, учатся жить в определенном климате, а северянам нужен совсем другой опыт для выживания.

Распространенные заболевания

Нарушение мозгового кровообращения занимает ведущие позиции в общей массе болезней ЦНС. Острое нарушение мозгового кровотока, транзисторные (преходящие) ишемические атаки, ишемические и геморрагические инсульты – патологические процессы, которые коррелируют с атеросклеротическим поражением сосудов, питающих мозговую ткань, и устойчивым повышением значений артериального давления. Патологии, которые поражают ЦНС:

  1. Заболевания сосудов, обеспечивающих кровоснабжение мозговой ткани.
  2. (связанные с разрушением миелиновой оболочки, покрывающей аксоны).
  3. Нейродегенеративные процессы (характеризуются прогрессирующей гибелью нервных клеток – болезни Альцгеймера и Паркинсона, ).
  4. Травмы в области головы (механические повреждения черепа и мозговой ткани).
  5. Инфекционные заболевания (энцефалит и менингит, паразитарные инвазии, абсцесс, лейкоэнцефалопатия, эмпиемы – скопление гноя).
  6. Вертеброгенные болезни (связанные с остеохондрозом и другими заболеваниями позвоночника, к примеру, ущемление корешков спинномозговых нервов).
  7. Вегетативные и невротические расстройства.
  8. Эпилепсия и другие пароксизмальные нарушения сознания.
  9. Онкологические заболевания.
  10. Наследственные болезни (связанные с генными мутациями, к примеру, синдром Дауна).

Роль аксона в функционировании нервной системы

К распространенным заболеваниям ЦНС относятся мигрень, кластерная и головная боль напряжения, другие виды цефалгий. Хронические и острые интоксикации (отравление этиловым спиртом или химическими веществами) также часто встречаются в неврологической практике.

Оцените статью
Добавить комментарий